EECS 755 - Midterm Exam

Spring Semester 2022 March 31, 2022

Exercise 1 Which of the following statements are true? (1pt each)

- 1. The induction tactic implements proof-by-cases
- 2. The Definition construct can define a recursive function.
- 3. The rewrite <- H tactic applied with H:A=B will replace A with B.
- 4. The unfold tactic replaces a function with its definition
- 5. An enumeration is an Inductive type with no recursion.
- 6. The reflexivity tactic solves any goal of the form A = A.
- 7. The simpl or intros tactics get rid of universally quantified variables in the goal.
- 8. The intros command will transform the goal x=y -> y=x into the new goal x=y and adds y=x to the assumptions.
- 9. When using Inductive to define a type, the resulting constructors together create every value of a specified type.
- 10. A decision procedure determines if a term is true or false.
- 11. Coq functions may take types as arguments and produce types as results.
- 12. A value of p given the declaration p:x<y is a proof that x<y.
- *13. A* transition system *defines a finite collection of states and a transition function.*
- *14. In* The Adventures of Buckaroo Bonzai, *Perfect Tommy is the bass player for* The Hong Kong Cavaliers

Exercise 2 In this problem you will define an inductive type for n-ary trees of natural numbers. Recall that an n-ary tree is a tree where nodes have a value and an arbitrary number of branches. A leaf node is a node with zero branches.

- 1. Define an Inductive type for n-ary integer trees.
- 2. Define a function search that will search an n-ary tree for some natural number and return option nat where the None constructor indicates not found and Some returns a natural number.
- 3. Give some n-ary tree, t, what proof goals will induction t generate?
- 4. Rework your definition to make your n-ary tree definition polymorphic.
- 5. Rework your search function to be polymorphic over your polymorphic tree. In other words, search should work no matter what type is in the tree. (This is tricky, be careful)

Exercise 3 Assume the following two inductive data type definitions:

```
Inductive colors : Type := Inductive stack : Type :=
| red : nat -> colors | empty : stack
| yellow : nat -> colors | push : nat -> stack -> stack.
| green : nat -> colors.
```

- If a proof goal has the form s=s where s is a stack, what proof tactic wold you apply first? Describe the result.
- If a proof goal has the form forall n s, push(n,s)<>empty what proof tactic would you apply first? Describe the result.
- 3. If a proof goal has the form p c where p is a property and c is a color, what proof tactic would you apply? Describe the result.
- If a proof goal has the form p s where p is a property and s is a stack, what proof tactic would you apply? Describe the result.
- 5. Given a term of the form H:A->B=C, what is the difference between apply H and rewrite H?
- 6. Given s:stack what goals and assumptions are generated by induction s?
- 7. Given s:stack what goals and assumptions are generated by desruct s?
- 8. Does discriminate do anything with (push 2 s) = (push 3 s)? If so, what?
- 9. Does injection do anything with (push 2 s) = (push 3 s)? Describe the result.
- 10. Given c:colors, what is the difference between induction c and destruct c?