HNRS 190

Freshman Honors Symposium

Index
Blog

Inference Rules

Rules for \(\wedge\)

\[\frac{X,Y}{X\wedge Y}, \frac{X\wedge Y}{X}, \frac{X\wedge Y}{Y}\]

Rules for \(\vee\)

\[\frac{X}{X\vee Y}, \frac{X\vee Y,X\vdash Z,Y\vdash Z}{Z}\]

Rules for \(\Rightarrow\)

\[\frac{X\vdash Y}{X\Rightarrow Y}, \frac{X,X\Rightarrow Y}{Y}\]

Rules for \(\Leftrightarrow\)

\[\frac{X\Rightarrow Y,Y\Rightarrow X}{X\Leftrightarrow Y}, \frac{X\Leftrightarrow Y}{X\Rightarrow Y}, \frac{X\Leftrightarrow Y}{Y\Rightarrow X}\]

Note that \(X \Leftrightarrow Y\) and \(X = Y\) are the same thing in propositional logic.

Rules for \(\neg\)

\[\frac{X\vdash\mathsf{FALSE}}{\neg X}, \frac{\neg\neg X}{X}\]

Rules for \(\mathsf{FALSE}\)

\[\frac{X,\neg X}{\mathsf{FALSE}}\]